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ABSTRACT

I
Optimal synthesis procedures for second-order state—space digital

filters hove been developed in the sense of minimum output roundoff

noise with L2 scaling . It has been demonstrated that these procedures

are also nearly optimal for L~ scaling . The coefficient sensitivities

hove been shown to be closely related to the roundoff-noise components,

and hence the optimal designs also hove low sensitivity properties.

The limit—cycle behavior of state—space structures has been investigated

for rounding and for magnitude truncation. It was shown that rounding

often leods to large autonomous limit cylces; while with magnitude

truncation , it is possible to ovoid limit cycles altogether. These

results are presented in the two papers attached to this report.
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OI’T I MItL SYNTIIE S I S  OF SECOND— ORDE R

STATE-SPACE STRUCTURES FOR DIGITAL FILTERS

Leland B. Jackson , Allen G. Lindgren , and.Young Kim

University of Ithode Island
Kingston , Rhode Island 02881

Abstract

Sufficient conditions are derived for a second— order state—

space digital filter with L
2 scaling to be optimal with respect to

output round—off noise; and from these , a simple synthesis proce-

dure is developed. Parallel-form designs produced by this method

are equivalent to the block-optimal designs of Mullis and Roberta.

The corresponding cascade—form designs are not equivalent , but

they are shown by example to be quite close in performance. It

is also shown that the coefficient sensitivities of this struc-

ture are closely related to its noise performance. Hence, the op-

timal design has low coefficient sensitivity properties, and any

other low-sensitivity design is a good candidate for near-optimal

noise performance . The uniform—grid structure of Rader and Gold

is an interesting and useful case in point .

This research was sponsored by the Air Force Office of Scientific
Research , Air Force Systems Commazil , USAF , under Grant. No. AFOSR-
76-3057.
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In t roduc ti on

The synthesis of IIR digital filter structures with low

roundoff noise based on state—space formulation has been intro-

duced by Hwang [1-4] and Mullis and Roberts [5_7]. These struc-

tures are especially eff ect ive in reducing the output noise level

from narrow—bandwidth filters. However, the general technique

leads to structures having many more multipliers than the canoni-

cal structures (i.e., N
2 more , where N is the filter order). Rec-

ognizing that this would often make these structures impractical ,

Mullis and Roberts have proposed that the state-space structural

form be used only for the individual sec tions of the cascade

or parallel forms and that these structures then be optimized to

produce “block— optimal” cascade or parallel forms. These block—

optimal structures have only about twice the number of multi-

pliers as the canonical structures , but greatly decreased noise

levels are still achieved for narrow—bandwidth filters.

The synthesis procedure of Mullis and Roberts involves the

calculation of “block second— order modes” for the filter, which

are obtained from the eigenvalues of certain matrices. For the

block-optimal parallel form, the optimization of the overall net-

work is equivalent to optimizing each of the parallel sections

separately. For the block— op timal cascade form, however , the

choice of pairing and ordering for the poles and zeros of the

filter influences the resulting optimizeQ design, although the

pairing and ordering choice itself is not optimized. In either

case , the synthesis procedure is relatively complicated, and

simpler procedu res for optimal or near— op timal design are do-

sizable.
- I ,
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We have dcvi veil a so L of su FE’ I c1ci~ L coiLd i. L ions  i’ov a sccoiid—

order state—space s t ruc tu re  to be op timal , and from these condi—

tions, a simple synthesis procedure is produced. Parallel  (IC—

signs produced by this procedure are block— optimal ; but because

the sections are individually synthesized (excep t For scaling),

the resulting cascade designs are not block— optimal. Design ex-

amples show , however, that the difference in performance between

our technique and that of Mullis and Roberts for the cascade

form is quite small.

We have also shown that the state—variable noise terms are

closely related to the sensitivities of the network coefficients.

Hence , the designs with optimal noise performance also have low

coefficient sensitivities. Alternatively , any design with low—

sensitivity properties is a good candidate for near— opt imal

noise performance. In par t icular, an a l t e r n at e  synthes is pro-

cedure leading to good (but not optimum) noise performance is to

force the state transition matrix A to be anti—symmetric , which

corresponds to the uniform—grid structure of Rader and Gold [12].

Noise Minimization

A flow diagram of the second— order state— space structure is

shown in Fig. 1, corresponding to the state equations

(n+1) = A (n) + bu(n) + (n)

= c~~(n) + d u (n )  + 0
3

( H) .  (1)

The roundoff errors ej(n), J = 1,2,3, are assumed. to be uncor—

related over n and j, and hence the output noise power is given

by

•1 
_____________________________________________________________________
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= k 
~~ j=l 

IIG’j~; (2)

where G’~(z) is the (scaled) 
frequency response from e~~(n) to

y(n), il .II~ denotes the norm , is the variance of the noise

from a single rounding operation , and k is the number of round-

off errors included in each e~~(n) [9]. In general, k = 3 if

rounding is performed after multiplication (before summation);

while k = 1 if rounding is performed after summation. Scaling

is assumed to be of’ the form

= 1 (
~~

)

where F,(z) is the (scaled) frequency response from u(n) to

and most commonly, p = 2 or p = 
~ [9). 

We analyze and optimize

only the L2 
scaling case here although the resulting networks

can be readily resealed to realize L scaling.

Given a filter design (A,b ,c ,d) with unscaled and unoptimized

responses F1(z) and G~~(z)~ 
we consider the class of’ designs de-

fined by (il ,b’ ,c’ ,d) ~ (i¼~ , T~~b ,cT ,d). Defining the response

vectors Ft(z) (F1(z),
F.,(z)) and G

t
(z) (G1(z),G.)(z))and similarly

for the scaled vectors F(z) and G’ (z), it is readily shown that

-I
F’ ( z )  = ~zl — A’] b’ = T 1F(z) (4)

and

G’ (z) [z.L— A’ I j .1 c’ ~ = T t G( z) .  ( 5)

~Jote tha t G’
3(z)  1 i ndependently of ‘F, and lin,ico it cannot affect

the noise minImization).

;
_

~~~~~~ 
_ _-:-

~~~~~~~~
-----

~~~~~
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Mu ll i  s and U obei ’Ls [ 5— 7] t iave shown LIu. I ilocessary ~LIL(1 siJi’—

fielent conditions for minimum outpu t noise variance subject to

L2 scaling are

W’ = DK’D (6)

and

K’ . W’ . = K’. . W’. . for all i, j  (7)
11 ]-i~ JJ JJ

where

K’ = E (A ’ ~
C
b
# 

) (A ’ kbi ) L (8)
k 0

= E (c l Ai k ) t (c i
Al k ) ( 9)

k0

and D is a diagonal matrix . Definitions (8) and (9) may be ex-

pressed in the frequency domain as

K’ = ~ F
’(z) F

i t  
(z~~~) z~~ dz (10)

and

= ~ G’ ( z) G’ t (7 ’l ) z ’1 dz. (11)

Hence , the scaling constraint in (~~) implies that

K~~ = 11 F 11 = 1 for all i, ‘ (12)

and from (7) we then have

= W~~ for all i ,J (13)

or

JIG~II = IIG’~II for all i,j. (114)
2 2

That is , the optimal networks is characterized ~~ having equal

noise contributions from each error source.

:~ ~~~ ‘1~~~~
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Equations (12) and (13) show that (6)  is s a t i s f i ed  ii’, and

only if, D = o.E ; and thus an alternate condition which is both

necessary and sufficient for optimality (after scaling) is simp ly

= P~~K
’. (15)

In the second-order case , we note that (is) is not changed by

wri t ing  it  as

Ii’ = P~~MK
’M (16)

where

1

\i. o
because W’ and K’ are symmetric matrices with equal diagonal ele-

ments. From (8) and (9), it is readily shown that (16) and thus

(is) are satisfi ed by a network of the form

A’ ~ = M A M  (.17~i)

and

c = PM b’ ; (17b )

and for complex— conjugate poles , (17) can always be realized with

real—valued c o e f f i c i e n t  matr ices  A , b’, and c’ . After exploring

— — ---— — — -•_---;— 
*—

~
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this case furtIiei’ , we w i l l cons ider  the case of reai—valued poles

in a second— orde r f i l t e r.

(5~ In terms of the elements of (A
’ 
,b’ ,c’,d), (17) states simply that

a’1,1 = a’
22

and (18)

b’~, 
- 

C’
2

I Pb c
2 1

This network is readily synthesized from an arbitrary (A,b ,c ,d)

as follows : One implication of (17) is tha t if the transpose of

the optimal network is formed and the states x
1 and x2 are inter-

changed , the resulting network is identical with the original op-

timal network excep t for scaling. But if we form the network

(MA
tM ,Mc t/2,btM ,d/2) and place it in paralle l with the network

(A ,b/ 2, c ,d/ 2 ) ,  we produce an overall ne twork  wi th  the above prop~

erty and the same transfer function. Therefore , we can synthe-

size the optimal network simply by merging these two parallel net-

works into a single network (A ,~~,2~,d) and then scaling it via

I
T =  L (19)

0 
~~ 2~~ J

The above syn I lies is te c l it i  I qile i s J)~ i’ I I cu .1 a t’iy S I I’~I I g Ii I ho rwa i’d

when one starts with the transfer function H(z) expressed as

+ ~ z
_i

H(z) = d + ‘ (20)
B 2z + 8 1z + 1
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and I nip touiioii hod , I ’ u i ’  ox a l l ij i  to , by

A = ( - 

b = (OI~ 
(21)

c = 
~“l 

y2).

The coefficients of (A ,i),c ,d) are then

a 11 = a 22 B i/2

b2 V 1 (22)

V
I

= 

~ + ‘
~
‘2 2 

— 1

~~l2 = ~
•
~

2 (i+V ) 
~~~~ 2 B 1V1) ± - ~ l~~2~ l~~~l ~ 2 ~

~~2l = 
~~~~ ~~ ~ ~~~ ~~ A/ v 2 - ~l~ 2~l~~~l ~ 2

The expression under the radical in a
12 

and a
21 

is always positive

for complex—conjugate poles , and hence the coefficients in (22)

are all real—valued in that cases Note that the coefficients in

(22) do indeed satisfy (18). If the network (A,1 ,c ,d) is thou

scaled via (19) ,  the resulting second-order network is optimal

for L2 scaling. The network may be scaled instead via

o
T I

0 II~’2II~
to realize L scaling , if desired. The resulting network is not

the op t imal  L network, in general , but our initial experiments

with this case indicate it is very nearly optimal,

~~ ~~~~

-

-—-—

‘----- ~
c.4. 

~~~ 

—
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Tu rn ing briefly to the case of real—valued poles (p 1, and

we consider an A of the form

A = 
~1a1 a2\~ (23)
~a2 a

1)

where we then have

1 1
a1~~~~~~(p1

+ p
2

) ,  a2
± .~~ (p1 - p 2).

Note that (23) still satisfies (l7a) as well as A t = A . The ap-
propriate relationship between b and a depends on the location of

the zero for H(z)_d. In particular , 6 and a can satisfy either

( 17b ) or

= (24 )

in order to satisfy the optimality condition in (16) or (15) ,

respectively. Scaling of a network sñtisfying (23) and (l7b ) is

performed as before via (19); while scaling for (23) and (24) is

accomplished via an orthogonal transformation as described in the

next section in order to preserve the symmetry of A’

Coefficient Sensitivities

The minimization of the roundoff noise also implies low sen-

sitivities for the network coefficients. To show this, we note

first that

011(zj 
= G’

1(z )e b’

and (2 5)

811(z) 
= F’ (z )

A

,
. 

~~~~~~~~~~~~~~~~~~~~ z~
_ _ , -

. 
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where 11(z) is the overall transfer function of’ the second— order

section. But in the optimal network we have minimized the sum of

the L
2 
norms of these sensitivities, subject to the scaling con-

s t ra in t  in (3) . We then define the sensitivities

S’ (z )  = 
811(z) 

= G’ (z ) .  F’ (z) (26)

i j

for the feedback coef f ic ien ts  in A . In [8] it  was shown that

IIS’1~ II 1 � HG’J 11 2 IIF’)12, (27)

and hence , from (3) and ( �7) , we have

IIS~1J U1 � IIG’~,ll~. (28)

Therefore, the upper bounds on the four sensitivity norms in (28) have

also been jointly minimized . Note , in particular, from (14) and (28)

that the upper bounds on all four IS’1,~ ll1 are the same.
Alternatively , of course, (28) provides lower bounds on the

noise contributions from e
1(n) and e2(n) in terms of the sensitivi-

ties of the coefficients in A’. If these bounds are reasonably

tight , as experience has shown them to be [8], then low-sensitivity

networks should also provide low roundof’f noise . One network having

uniformly low sensitivity over the entire z plane , at least in terms

of the grid of possible pole locations with quantized coefficients ,

was noted ten years ago by Rader and Gold [12]. This network is pro-

duced simply by forc ing A to be anti-symmetric , i.e.,

a11 a22 = Re [po losj

H (29)
—a 12 = a21 ].m[poles]

a’
- - 

~~ 
• 

—-- —

- 

-
~ 

-

~~ - .... . - . • . . - ‘~a

- -  ‘ 
,
‘
~~~~~

- ‘
~~~~~~~~:~~ 

- .
~
‘,. .- - - , 

- - -- 
-

- —4



where the poles must be complex conjugates. The coefficient vectors

1 % b and c are not uniquely specified by (29), and there are two dis-

t inctly  useful ways to generate b and c. We note f i rst tha t (29 )

does satisfy the first condition in (18); and thus if b and c are

chosen to satisfy the second condition in (18) as well , the anti—

symmetric network and the optimal network are related by a simple

diagonal scaling t ransformat ion of the form of (19). This consti-

tutes, in fact , another simple technique for synthesizing the op-

timal structure when the poles are complex. The unif’orni—gri.d

property is not, however, preserved in the optimal network, in

general.

To preserve the uniform-grid property of the ant i -symmetr ic

network , one instead seeks a t ransformat ion  T which alters b (and

c) to satisfy (3), but does not change A. The appropriate trans-

formation is an orthogonal transformation times a scaling constant

[15], i.e.

/cos e sin ) - (30 )
e cos eJ -

where the “ ro ta t ion” angle 0 and the scaling constant p are de-

termined such that II~ 1IP2 I!F~ll~~ 1. In particular, from (4) and
(30) we find that (with p = 1)

2 2 2
JJ J’~JJ cos2O IPF1JJ + sin2 0 11F2!I — 2sine cosO (F1,r2) (~ i)

2 2 2

11 211 sin 20 ~Y1IJ + cos2 0 ~F2I~ + 2sinO co.O (! , , F 2) (32)

-1

- . 1

I 
- - - 

- -. - -  —~-~_ -  -— -
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I where

(F1,F2 ) ( 
~~
—j ) ,~~ F1(z )  F2 (z ’1)z 1dz.

1.
Subtracting (31) and (32) , we obtain

- 1 F 1 2 t F I 2

tan 2~ = 
1 2 — 

I 21 2 - 

(yj)
2(F1 ,F2)

from which to solve for e. The constant p is then ~readi1y obtained

as l/lIF
’
~,lJ 2. The contour integrals in (33) are rapidly computed as

described in [14]. The 0 resulting anti—symmetric design is not op-

timal , but as shown in the examples of the next section , the noise

performance is only about 1- 3db worse than the optimal design.

Examples

Five filter design examples are presented in Tables 1 and 2,

where the noise gains are given in dB. The first three de-

signs are from [13], and the last two are described by Mullis and

Roberts [6]. In Table 1, the canonical (ip), anti-symmetric , and

- block~ optimal designs in parallel form are compared. The block-

optimal designs wer~: obtained from (22)  and (19). The anti-

• symmetric designs satisfy (3) and ( 29 ) ,  and hence are suboptimal.

Note that the performance of the block— optimal design is best in

all 5 cases, with the most significant improvement coming in the

narrowband case , as expected. Noto also tha t the ant i— symmetr ic

designs are close to the block-optimal designs in performance.

The corresponding results for the cascade— form designs are

presented in Table 2. An additional column is included here be-

cause , as discussed in the Introduction, our ~soction_ optiurn1R

d..ign. resulting from (22) and (19) are not qui te  the same as

I •-- - i

T~T~ ~~~~~~~~~~ 
- 

~~~ 

_ _
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the block— optimal designs of Mullis and Roberts. The !‘unctions

F~ (w) in (19) include the transfer functions of all preceding sec—

tions so that (3 )  is satisfied exactly. This form of scaling has

also been applied here to the b 1ock~ optimal designs.

No attempt

has been made to optimize the section ordering. As the table

shows, the results for the section- optimal and block— optimal de-

signs are quite close and are significantly better than those for

the canonical structure in all but one case , where they are com-

parable. The results for the anti—symmetric designs are also near—

optimal, but differ by 2-2.5db in the Buttorworth cases.

It should be noted that it is possible for  the canonical

forms to have lower noise gain than the optimal forms, although

this did not happen in these examp les , because the second— order

state— space structure has almost twice the number of multipliers

of the canonical structure. However, this rarely happens, and

when it does, the advantage is 8mall. 
-

Conclusions -

We have determined sufficient condition-s for a second— order

digital filter in state-variable form with L
2 

scaling to be op-

timal with respect to output roundoff noise and have described

two simple techniques to synthesize the optimal network. In ad-

dition, we have shown tha% or norms of the coefficient sen-

sitivities of the optimal network (or bounds on these sensitivi-

ties) utre also minimized , and hence this network provides both low

roundoff noise and coefficient sensitivity. These second— order

structure . can be combined to form ‘s.ction-optimal” parallel or

I
~~~~~~~~~~~~~~ 

. - 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - .
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cascade forms which are the same as or close to, respec tively,

the “block-optimal” parallel or cascade forms of Mullis and Rob-

erts.

The optimal network is within a simple diagonal transformation

of the anti-symmetric network of Rader and Gold , which has the nice

property of a uniform grid cf possible pole locations in the z

plane with quantized coefficients. If the anti-symmetric network

is scaled so as to preserve the anti— symmetric property , we find

that the resulting noise performance is close to (within typically

1— 3db of) that of’ the~ optimal network. In either case, the noise

is relatively constant (or actually decreases) as the bafldwidth

of the filter is reduced, in contrast with the performance of

canonical structures.

Recently , it has also been shown that the anti—symme tric

(“normal”) -form [16,17] and our optimal form [17] for second-order
sections cannot sustain autonomous overflow oscillations. Hence ,

parallel or cascade structures comprised of such sections have

the additional desirable property that autonomous overflow oscil—

• latione cannot occur. -
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Table 1. IN dii FOR PARALLEL FORM DES IGN

- 

- Filter Canonical Anti—Symm. Block— Opt

13.8 11.0 10.9

19.2 
— 

14.0 11.8

• 16, 8 13. 7 15. 5
But terwth

f o ~~~5r 
14. 2 14.6 13, 4

Bu t torwth
LPF N 6

27.0 14.8

Table 2. ~~~~~ IN dB FOR CASCADE FORM DESIGNS
• F i l te r  Canonical Anti—Sym. Sect—Op t Block~Opt

21 0 10.5 10.5 10. 5

_LPF,N10 29.9 24.2 214.5 24.1

21.5 16. 9 16.8 , 16. 5
Butte rwth

25f~ 9.2 11. 0 9.1 9. 0

Butterwth

f0 025f  18.7 10.3 7.9 7.7
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Limit Cycles in State—Space Structures
- for Digital Filters

Loland B. Jackson
University of Rhode Island
Kingston , Rhode Island 02881

ABSTRACT

It i~ shown that large quantization limit cycles are pos-
sible in state—space structures for digital filters with round-
ing, as opposed to magnitude truncation where such limit cycles
can be avoided. The coupled—loop structure is considered speci-
fically . The maximum limit-cycle amplitudes with rounding are
obtained analytically for poles near the imaginary (or real)
z-plane axis and by simulation for other regions of’ the z—plane .

Thi. research was supported by the Air Force Office of’ Scientific
Research , Air  Force Systems Command , USAF , under Grant No.
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I itt roduc t. i ()I~

Sta t e—space  str u c t u r e s  for  d ig i t a l  f i l t e r s  have been described

by Mull is and Roberts [i—s], t iwang [i ;— 7] , and Jackson , Li tidgron

and Kim [8—9]. They have shown tho t these structures can possess

very low roundoff noise and coefficient sensitivity at the expense

of’ increased computation over canonical structures. Barnes and

Fam [io] have also shown that these structures can be designed to
eliminate the possibility of’ overflow osci l la t ions.  Specif ical ly,

the second—orde r “coupled—loop ” structure of Rader and Gold [11],

wii i oh has an ant i— s ymme tri o system mat ii x A , is free of au I.onomous

overflow oscil lat ions; arid Jackson , Lindgren and Kim have shown

that the roundoff’—noise performance of’ the coupled—loop structure

is close to optimal. -

A key remaining question concerning state— space structures

is their limit—cycle behavior due to internal data quantization.

Although not not ed by Barnes and Fam , filters satisfying their

conditions for the absence of overflow oscillations will also be

free of zero-input quantization limit cyc l es if magnitude trun-

cation is used. However , if rounding is employed , limit cycles

can occur which are substantially larger than those in the cor-

responding can onical structures, as we show in this correspondence.

He nce , in using state— space structures for digital f i l ters, one

may well choose to employ magnitude t runca t ion  in api te  of its

inc reased noise variance and noise/ s ignal corre lation ;is C ompared

with rounding.
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Rounding Limit Cycles

We will investigate the zero—inpu t l i m i t — c y c l e  behavior

of’ the second— orde r coupled—loop s t r u c t u r e  w i t h  rounding as

being indicative of the more general (and more complicated)

second— order case. Second— order structures arc of particular

interest because they are the basic building—blocks of various

optimal or near-optimal cascade and parallel forms [1-3,8—9].

With zero input and rounding , the filter obeys the state

equat ion

x(n+l) = [Ax (n) j1~ (1)

where x(n) is the state vector at time n, A is the system matrix ,

and 
~~
. ]~~ 

denotes the rounding operation. The second— order

coupled—loop case is depicted in Fig. 1, and the canonical case

in Fig. 2. We assume rounding a f t e r  each m u l t i p l i c a t i o n .  The

complex-conjugate poles of this filter are simply a+jb.

A simple i l l u s t r a t i on  of the l a r g e - l i m i t  cycles possible-

wi th  the coupled- loop s t ruc ture  is provided by setting a = 0.

Then the e f fec tive—vai ie  model of Jackson (12] shows tha t we can

have l imit  cycles wi th  amplitudes as large as

(21—b -~I

where donotes the integer part .  Tho corresponding expression

for  Lire canohl  I en I s 1; rue Lii ir I s

~~ = 1 :  

~~b2 ~~ [ 

~~~~~ ‘~~

because the second— order coe f f i c i e n t  in tha t case is,t~2 b2 . Hence ,

the maximum limit—cycle amplitude in the coupled-loop case is approzi-

ustely twice tha t in th. canonical case for poise on or near the

• •
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imaginary axis. A similar analysis can be made for the coupled—loop

structure with poles Ofl or near the real axis (i.e., b ~~ o) .

The nature of the more general s i t u a t i o n  f o r  the coupled— loop

structure is illustrated in Fig. 3 , which shows in one quadrant

of’ the z plane the corresponding max imum limit-cyc le amplitudes

as determined by computer s imula t ion  for md ii  up to abou t 0 .9.

Mirror- image symmetry holds about both  the real and imaginary

axes , as well as about + 45 0 diagonals through the o r ig in .

Hence, the amplitude , for poles with given radius near the real

axis is the same as near the imaginary axis , as opposed to the

canonical case where much larger amplitudes are produced near

the real ax is [12].

The wors t case for the coupled—loop structure occurs on

the 450 diagonals, i.e~~, for  f requencies of = it/ li and 5it/4.

Table 1 shows that the radii for K = 1,2,1 in the canonical

case are comparable to those for K ~,6,lO , respectively ,

in the cou p led— loop case , and hence the maximum limit-cycle

amplitudes for the coupled—loop structure are about triple those

for the canonical structure at these frequencies.

Conclusions

The advantages of “well— designed” state—space structures

for digital filters over canonical structures (at the expense of

increased compu tation) include reduced roundoff noise and

coefficient sensitivity , freodom from ovortlow oscillations , and

freedom from quantization limit cycles if magnitude truncation is

employed. If rounding is employed, however, large quantization limit

cycles can occur in the state-space structures. The coupled—loop

L _ _  
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structure was selected for investigation because it is particu—

larly s imple to design and analyze and because it possesses the
I

advantages cited above.
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Canonical Structure Couplod-Loop Structure
Amplitude Mm .  Radius Amplitude 

— 
M m .  Radius

K 1 0,707 K = 3 0.707
K 2 0.868 K = 6 - 0.884

K ‘3 0.913 K = 10 0.919

Table 1. Minimum Radii f or Given Limit-Cycle Amplitudes
at oi it/Is and 3n/14.
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